资讯新闻
当前位置: 主页 > 自然地理 >

木本植物指数怎么算(木本植物指数怎么算出来的)

时间:2023-12-04 10:49:42
灌木如何计算植物多样性指数

可以通过重要值计算灌木或者草本植物的多样性的指数。

由于百度这个回答窗口无法正常显示编辑的公式,我给你一个链接,你可以学习一下。另外,马克平这方面有很多文章你可以引用或者学习。

类似你的研究内容的文字链接如下:

植物竞争指数怎么计算

植物竞争是指不同植物间对限制性资源的共同需求而产生阻碍或制约的相互关系,是生物学领域一个非常重要的方面。竞争特征可以归结为3个方面:(1)竞争强度和重要性,(2)竞争影响和反应;(3)竞争后果。基于不同的角度,形成了一系列植物竞争能力的测度系数,而特定的竞争系数通常要求与相应的试验设计相匹配,这样不同研究间的结果比较非常困难,选用哪种竞争系数来测度植物竞争关系非常困惑。本文简要总结了植物竞争能力的基本组成元素,根据竞争特征对植物竞争测度方法进行归类综述,对竞争能力系数应用领域的可适用性和其功能的局限性进行分析评价,为相关研究正确选择试验设计和测度方法提供帮助。

如何计算乔木、灌木、地被植物的多样性指数?

我觉得以株数统计的,可以套用公式,计量单位都是株,如果是面积,那么下面的n也也是总面积,上下单位一直应该就不会出错。可以套取这个公式,用excel算

=1-SUMSQ(C3:C29)/POWER(SUM(C3:C29),2)

植被指数总结(作业)

title: 植被指数总结笔记

tags: 新建,模板,小书匠

grammar_cjkRuby: true

植被指数是不同遥感光谱波段间的线性或非线性组合,被认为能作为反映绿色植被的相对丰度和活性的辐射量值(无量纲)的标志,是绿色植被的叶面积指数(LAI)、盖度、叶绿素含量、绿色生物量以及被吸收的光合有效辐射(APAR)的综合体现。目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。

1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的;

2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息

3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响

公式: RVI=ρNIR/ρRED(近红外波段反射率/红光波段反射率)

特征: 植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度50%时,这种敏感性显著降低;值的范围是0-30+,一般绿色植被区的范围是2-8。RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

应用:

①利用比值植被指数研究城市建设用地扩张速率,预测或规划城市未来今年的发展前景。不同用地的地表温度由高到低排序是城镇用地、工矿与交通用地、农村宅基地、林地、旱地,说明建设用地的地表温度较高,其比值植被指数较非建设用地小。RVI的平均值 M和标 准 差 D 可以作 为定量指标来提取建设用地:RVI ≤M-D/2为建设用地;RVI>M-D/2为非建设用地。

②可用于实时、快速、无损监测作物氮素状况,这对于精确氮肥管理有重要意义。利用高光谱比值指数RSI(990,720)来估算小麦叶片氮积累量为便携式小麦氮素监测仪的研制开发及遥感信息的快速提取提供了适用可行的波段选择与技术依据。

公式: DVI=NIR-R

特征: DVI能很好地反映植被覆盖度的变化,但对土壤背景的变化较敏感,当植被覆盖度在15%~25% 时,DVI随生物量的增加而增加,植被覆盖度大于80% 时,DVI对植被的灵敏度有所下降。

公式:

(近红外区与红光区的反射率差值/近红外区与红光区的反射率和值)

特征: 值的范围是-1-1,一般绿色植被区的范围是0.2-0.8。负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大。

NDVI是很常用的植被指数,虽然NDVI对土壤背景的变化较为敏感,但由于NDVI可以消除大部分与仪器定标、太阳角、地形、云阴影和大气条件有关辐照度的变化,增强了对植被的响应能力,是目前已有的40多种植被指数中应用很广的一种。

NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;对大气干扰处理不足,大气残留噪音对NDVI指数影响严重;易受土壤背景干扰,特别是中等植被覆盖区,当土壤背景变暗时,NDVI指数有增加的趋势。

应用: ①对NDVI曲线进行定量分析,研究植被分类和植被动态变化;利用NDVI时间序列来得到植被生长气候和植被覆盖的信息等(植被的类型较为复杂,而且任一种反映到NDVI数据的植被特征也不是单一的,植被类型分类在不同的地区有不同的定义和标准,有待于更深入的研究。)

②植被指数转换即通过对各像元中植被类型及分布特征的分析,建立植被指数与植被覆盖率的转换关系,直接估算植被覆盖率,进而分析生态系统的状况,例如植被的生长状况等。但该方法受到受分辨率的限制,一些重要参数无法准确测定。植被动态的变化也会对估算带来一定难度。

③通过分析基于多时相环境减灾卫星 NDVI 值拟合的 NDVI 时序曲线上提取的各特征参数建立作物单产估测模型,可用于农业生产的估测。

④建立模型反演地物类型及土壤水分等。

公式:

特征: 值的范围是-1-1,一般绿色植被区的范围是0.2-0.8。ARVI是NDVI的改进,它使用蓝色波段矫正大气散射的影响(如气溶胶),把蓝色光和红色光通道的反射率的差值作为衡量大气影响的指标。

局限性:RVI的抗大气影响是通过两个步骤实现的:首先以近似的辐射传输方程的数值解消除部分由于大气分子的光学厚度造成的影响,然后以蓝、红波段的大气影响相关性消除一般直径气溶胶的影响(大直径的尘埃气溶胶除外)。如果不经过5s模型的预处理,就达不到好的效果。

应用: ARVI常用于大气气溶胶浓度很高的区域,如烟尘污染的热带地区或原始刀耕火种地区。

公式:

特征: ①SAVI必须预先已知下垫面植被的密度分布或覆盖百分比,因而仅适合于提取某一小范围植被覆盖度变化较小区域的下垫面的植被信息。

②SAVI目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0-1。 L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。

③SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。

公式:

a,b 分别为土壤线的斜率和截距,0.08 则是土壤调节参数。

公式:

公式:

X 为土壤调节参数。X 的很佳取值为 0.16。

公式:

Z 是正土壤调节参数,恒等于土 壤 线 与 R轴的交 点 的 相 反 数,即 Z ≡-cross。

特征及适应环境: 在单一植被类型下,OSAVI 与 TSAVI 有较好的抗土壤干扰的能力,但是这种能力在不同 LAI 下的变化较大。相对的,在土壤背景信息已知的情况下,SA-VI,MSAVI 和 GESAVI 在不同植被类型下,表达植被信息的能力较为稳定,便于对不同 LAI 下的信息进行一致处理以提取植被信息,也更适合探测植被组成混杂时的植被信息。因此,OSAVI、TSAVI 可能更适合耕地、人工林地植被的监测,而 MSAVI、SAVI、GESAVI 更适合植被自然生长地区的植被监测。

公式:

特征: EVI常用于LAI值高,即植被茂密区。值的范围是-1~1,一般绿色植被区的范围是0.2-0.8。增强植被指数(EVI)算法是遥感专题数据产品中生物物理参数产品中的一个主要算法,可以同时减少来自大气和土壤噪音的影响,稳定地反应了所测地区植被的情况。基于 MODIS 的 EVI 植被指数具有较高的空间分辨率,可详细地反映地表植被特征。红光和近红外探测波段的范围设置更窄,不仅提高了对稀疏植被探测的能力,而且减少了水汽的影响,同时,引入了蓝光波段对大气气溶胶的散射和土壤背景进行了矫正。

应用:

①运用影像数据通过植被指数的提取分析来分析植被变化;按照增强植被指数的算法,通过对来自大气和土壤噪音的处理,生产出 EVI.tif。

②EVI可以描述特定气候带内植被在不同季节的差异。采用EVI来分析植被变化及与气候的变化,能反映研究区域内植被空间差异。通过分析不同生态分区EVI变化特征与气象因子的相关性为环境监测,治理及植被控制决策提供数据参考和理论基础。

公式: (-0.283MSS4- 0.66MSS5+ 0.577MSS6+ 0.388MSS7)

特征: GVI是各波段辐射亮度值的加权和,而辐射亮度是大气辐射、太阳辐射、环境辐射的综合结果,所以GVI受外界条件影响大。

公式: (-0.283MSS4- 0.66MSS5+ 0.577MSS6+ 0.388MSS7)

公式:

特征: 低LAI时,效果较好;LAI增加爱时对土壤背景敏感 。

类胡萝卜素反射指数1(Carotenoid Reflectance Index 1——CRI1)

类胡萝卜素反射指数2(Carotenoid Reflectance Index 2——CRI2)

花青素反射指数1(Anthocyanin Reflectance Index 1——ARI1)

花青素反射指数2(Anthocyanin Reflectance Index 1——ARI2)

特征: 叶色素指数用于度量植被中与胁迫性相关的色素。叶色素指数要求反射率数据范围在0~1。

应用: 叶色素指数应用于农作物监测、生态系统研究、冠层胁迫性分析和精细农业。

水波段指数(Water Band Index——WBI)

归一化水指数(Normalized Difference Water Index——NDWI)

水分胁迫指数(Moisture Stress Index——MSI)

归一化红外指数(Normalized Difference Infrared Index——NDII)

特征: 冠层水分含量指数用于度量植被冠层中水分含量。水分含量是一个重要的植物指标,较高的水含量表明健康植被、生长快及不易着火。冠层水分含量指数基于水在近红外和短波红外范围内的吸收特征,以及光在近红外范围的穿透性,综合起来度量总的水柱含量。

光化学植被指数(Photochemical Reflectance Index——PRI)

结构不敏感色素指数(Structure Insensitive Pigment Index——SIPI)

红绿比值指数(Red Green Ratio Index——RG)

特征: 光利用率指数是用来度量植被在光合作用中对入射光的利用效率。光的利用效率直接与碳吸收效率、植被生长速度和光合有效辐射(fAPAR)有很大的关系。

归一化木质素指数(Normalized Difference Lignin Index——NDLI)

纤维素吸收指数(Cellulose Absorption Index——CAI)

植被衰减指数(Plant Senescence Reflectance Index——PSRI)

特征: 干旱或碳衰减指数是用来估算纤维素和木质素干燥状态的碳含量。干旱或碳衰减指数是基于纤维素和木质素在短波红外波段吸收特性而计算。

应用: 干碳分子大量存在于木质材料和衰老、死亡、或休眠的植被,可以使用这些指数可以做植被着火性分析和检测森林的枯枝落叶层。

植被指数没有一个统一的值。受到大气状况、传感器观测条件、太阳照明几何、土壤湿度、颜色和亮度、不同植被类型及覆盖率的不同特征、分辨率等各种状况的约束,植被指数在使用时要结合实际情况以及研究和应用目标来选择,并且植被指数本身存在一定的误差。超(高)光谱遥感技术及热红外多光谱遥感技术的发展将拓宽植被指数的研究领域,并将成为新的研究生长点。关于植被指数的优化和深入研究仍旧在进行。

哪看癫痫好

治疗癫痫好的药

河南专治癫痫的医院

治疗癫痫病需要多少钱

治疗癫痫病方法是什么

------分隔线----------------------------